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ABSTRACT

Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential
system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental
failures do not occur during the mission. Individual environments include the trapped particles in Earth’s radiation
belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and
on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar
ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a
variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of
materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the
relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest

(~few 10’s eV) photoelectron energies to the highest (~GeV) cosmic ray energies.

1.0 Intreduction.

Developing reliable space systems for exploration of the
Moon and extended duration presence on the lunar
surface requires analysis of potential system
vulnerabilities to total ionizing dose, single event
upsets, surface and bulk charging, and other effects on
materials and systems due to exposure to the space
radiation and plasma environment.

Plasma and radiation environments that will be
encountered during lunar missions begin with the
outbound and inbound trajectories through the Earth’s
radiation belts where spacecraft are exposed to trapped
energetic ions which generate upsets in vulnerable
electronic systems and energetic electron environments
responsible for surface and bulk charging of spacecraft
systems. Lunar orbital and surface charged particle
environments are dominated at the highest flux levels by
the relatively low energy solar wind with monthly
encounters with the terrestrial magnetosheath and low
density, hot plasma in the terrestrial magnetotail.
Episodic energetic charged particle enhancements are

also observed in both the lunar environment and in
transit to the Moon from a variety of sources including
solar energetic particle . events and particle
enhancements in the Farth’s foreshock region. Episodic
energetic charged particle enhancements are also
observed in both the lunar environment and in transit to
the Moon from a variety of sources including solar
energetic particle events, substorm events in the Earth’s
magnetotail, and particle enhancements in the Earth’s
foreshock region. These events may produce enhanced
spacecraft charging environments and, in the case of the
solar energetic particle events, may dominate the total
ionizing dose for lunar missions. Solar energetic
particle events are likely to be the radiation design
drivers for short term lunar missions (less than a year)
while the penetrating nature of galactic cosmic rays are
a serious concern for human radiation dose when
contemplating missions exceeding a few years in length.
In addition to solar wind and the energetic solar and
galactic particle sources, the daytime plasma
environments near the lunar surface are dominated by
photoelectrons emitted from interactions of solar
UV/EUV photons with the lunar surface. Finally, the
penetrating nature of galactic cosmic rays and the
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Figure 1. Departure Time - Dependence for
Translunar Injection Orbit Radiation Dose.
Dose due to trapped electrons and ions during a
single pass outbound through the Earth’s radiation
belts are given for a range of departure times.

highest energy solar energetic particle events are a
serious concern for both human radiation dose and upset
rates in electronic systems. This paper reviews the
relevant plasma and radiation environments that must be
considered in the design and operation of Iunar
missions.

2.0 Terrestrial Radiation Belts

Translunar injection and trans-Earth return trajectories
require the vehicle to transit the radiation environments
trapped within the Earth’s magnetosphere. The amount
of radiation encountered while traveling through the
radiation belts depends on a number of factors including
the latitude of the launch or landing site, the low Earth
orbit departure or arrival longitude, geomagnetic
activity and phase in solar cycle, and details of the
individual orbit selected for the mission including orbit
inclination and spacecraft velocity that will depend
ultimately on the location of the landing site on the
Moon and the orientation of the Moon’s orbit plane
relative to that of the Earth [c.f., Bate et al., 1971].

For example, Figure 1 shows radiation dose variations
for single outbound 30° inclination transhinar injection
orbits for a range of departure times throughout a single
day. Dose is estimated from sampling the AE-8 trapped
electron [Vette, 1991] and AP-8 trapped proton [Sawyer
and Vette, 1976] radiation belt models along the 30°
inclination elliptical orbit. Dose in silicon as a function
of depth in a semi-infinite aluminum shield is computed
using the Shieldose-2 radiation transport code [Seltzer,
1980, 1994]. We have assumed an initial 300 km

perigee low Earth orbit parking orbit with lunar phasing
maneuver at 0° right ascension of ascending node, 0°
argument of perigee, and 0° true anomaly. Apogee is
379,867 km for a 100 km altitude Tunar orbit and mean
Earth-Moon distance of 384,400 km and the period of
the orbit is approximately eight days with slightly more
than 4 days required to travel from the Earth to the
Moon. Departure times are adjusted by shifting the
local time of the departure right ascension of ascending
node.

Variations in radiation dose are within approximately an
order of magnitude for the cases shown here and are due
to the time dependent radiation belt encounter geometry
for each of the orbits. Contributions from solar energetic
particle events (which can be significant) and galactic
cosmic rays (negligible) are not included and only the
radiation dose from the electrons and ions trapped in the
Earth’s magnetic field are included in the estimate.

Direct co-planar transfer orbits are only possible when
the translunar/trans-Earth injection orbit lies in the plane
of the Moons orbit. The inclination of the lunar orbit
varies from 18.2 to 28.5 degrees relative to the Earth’s
equator with a period of 18.6 years. Direct orbits
originating from due east launches are possible only
from launch sites at latitudes >28.5 degrees latitude and
other sites must generally use non-coplanar trajectories.
For example, co-planar trajectories are possible from
Kennedy Space Center at 28.5 degrees north latitude
once every 18.6 years but higher inclination orbits must
be used at other times.

The ten Apollo program flights which orbited the Moon
(Apollo 8 through Apollo 17) all were launched from
what is now the Kennedy Space Center (KSC) on the
east coast of Florida at 28.5 degree north latitude. A
direct ~28.5 degree inclination coplanar translunar
injection orbit was only possible from KSC during the
Apollo era on 25 March 1969 when the Moon was at an
extrerne north declination of 28°43°32°” and additional
dates [Meeus, 1997] when the coplanar trajectories are
possible from KSC include 15 September 1987
(28°42°52°%), 15 September 2006 (28°43°22°”), 7 March
2025 (28°43°00), and 25 September 2043
(28°43°109°°). All other times the flight inclination will
be greater than the minimum inclination obtained from a
due east launch resulting in reduced radiation dose.
Translunar injection orbit inclinations utilized for the
Apollo flights ranged from a minimum of 28.5 degrees
to a maximum of 32.55 degrees [Orloff, 2000]. More
recently, the Lunar Prospector spacecraft (also launched
from 28.5 degrees north latitude at Cape Canaveral Air
Force Station) utilized a 29.2 degree inclination
translunar injection orbit [Lozier et al., 1998]. In
contrast, the Clementine spacecraft was launched from
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Figure 2. Translunar Injection Orbit Radiation Dose. (a) Dose due to electrons and ions derived
from the AE-8/AP-8 trapped radiation belt models for a single pass outbound pass through the Earth’s
radiation belts. (b) Dose contributions from protons (solid), electrons (dash), and bremstrahlung
(dotted) for 0°, 20°, and 40° inclination translunar injection orbits.

Vandenburg Air Force Base at 34.75 deg north latitude
into a lunar injection orbit inclined at 67 degrees
[Regeon et al., 1994] and the European Space Agency
Smart-1 spacecraft launched from the near-equatorial
5.05 deg north latitude facility at Kourou, French
Guiana, utilized a translunar injection orbit initially
inclined 7degrees from the equator [ESA, 2003].
Finally, the series of Russian Luna probes launched in
the 1960°s and 1970’s from Baikanur, Khazakstan, into
near polar orbits with inclinations of 73 deg received
some of the smallest radiation doses while traversing
Earth’s radiation belts.

Radiation dose for single outbound translunar injection
orbits are shown in Figure 2-a for a range of
inclinations. The same translunar injection elliptical
orbit parameters used in the previous departure time
example are used here including the 300 km perigee,
379,867 km apogee, lunar phasing maneuver at 0° right
ascension of ascending node, 0° argument of perigee,
and 0° true anomaly. Total ionizing dose is obtained
from the AE-8 and AP-8 solar maximum models and
contributions from solar energetic particle events and
galactic cosmic rays are not included. The greater the
orbital inclination for the trajectory through the
radiation belts, the smaller the radiation dose received
by the spacecraft during transit of the radiation belts.

Figure 2-b shows the contributions from trapped
electrons, electron bremstrahlung, and trapped protons
to the total dose for three inclinations of the orbit used
in the previous examples. Proton contributions
dominate for very thin materials and very thick
materials with electrons providing the dominant

contributions at intermediate depths.  Surface dose
(depths <0.1 mm) is most important for thermal control
materials where surface damage modifies the optical
properties. If the surface doses exceeding a few tenths
of a megarad shown in Figure 1 prove to be of concern
in some applications, it appears that increasing the
inclination of the radiation belt transit orbits is an
effective method of mitigating the issue.

Charging environments in the Earth’s radiation belts are
particularly harsh. For example, spacecraft surface
charging in geostationary orbit may produce extreme
potentials on the order of kilovolts in sunlight and 10’s
of kilovolts in darkness [Olsen, 1986] and bulk (deep
dielectric) charging of insulating components and
isolated conductors may lead to electrostatic discharge
induced anomalies or even failures [Koons et al, 1998].

Figure 3-a from Garrett and Hoffman [2000] provide
estimates of spacecraft potentials for a spherical
spacecraft in darkness as a function of altitude and
latitude in the Earth’s magnetosphere demonstrating
where extreme spacecraft potential values may be
observed due to surface charging.  Fortunately the
values are significantly reduced when the spacecraft is
exposed to sunlight (due to the emission of
photoelectrons which reduces the amount of charge
accumulated on the spacecraft). Extreme charging
conditions in the midnight sector under eclipse
conditions which must be endured by spacecraft in
geostationary orbit is easily mitigated for lunar missions
by judicious orbit selection.
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Figure 3. Terrestrial Spacecraft Charging Environments.

)
]
9
e
8
®
»
2
i
% @ Ap = 5.0- 7.5nT
o {b) Ap = 10.0- 158 nT
£ {¢) Ap = 25.0- 55.0 nT
102 {d) Maximum flux -
{&} Feanell et al, 2000 S
10" L .
1 1o
Energy (MeV)
0 dea (solid} 30 deq {dash)
b)

(a) Surface charging potentials in

darkness due to collection of currents from magnetospheric plasma environments (from Garrett and
Hoffman (2000). (b) Bulk charging environments for 0 degree and 30 degree inclination translunar
injection orbits are compared to a worst case bulk (deep dielectric) charging design environment

[Fennell et al., 2000].

Figure 3-b gives orbit averaged 0.5 MeV <E < 6 MeV
electron flux environments generally associated with
bulk (deep dielectric) charging computed for
hypothetical orbits with perigee and apogee at 300 km
and 379,870 km, respectively, assuming the vehicle is
inserted into a 100 km lunar altitude orbit. The
CRRESELE trapped electron model [Brautigam and
Bell, 1995] provides the electron environments and orbit
averaged integral electron flux values are shown for
increasing geomagnetic activity levels in each of the
curves (a) through (d) where the magnitude of
geomagnetic disturbances are indicated by the planetary
A, index. Modeled average electron flux is a maximum
for 0 degree inclination orbits (solid curves) while the
average electron flux is reduced (dashed curves) for 30
degree inclination orbits (consistent with inclinations
used for the Apollo flights).

The final curve (e) in Figure 3-b is the orbit average
flux for half of a 0 degree lunar phasing orbit reported
by Fennell et al. [2000] as a preliminary worst case bulk
(deep dielectric) charging design environment for lunar
orbits derived from Combined Release and Radiation
Effects Satellite (CRRES) satellite energetic electron
measurements. Fennell et al. [2000] developed the bulk
charging environment specification by mapping CRRES
data from the spacecraft’s 18 degree - inclination
geostationary transfer orbit to the geomagnetic equator
and computing the orbit averaged electron flux for a 0
degree inclination, 10 hour lunar phasing orbit centered
on perigee. The phasing orbit therefore included both
the inbound and outbound segments of the lunar phasing

orbit through the Earth’s radiation belts with apogee
near lunar orbit and perigee in low Earth orbit and the
flux is reduced by a factor of two assuming the most
common mission profiles for future lunar missions will
utilize direct insertion translunar injection trajectories.

A blue dashed line indicates the flux threshold of
5.56x10° e/cm®-sec flux corresponding to the 10 hour
fluence 2x10'° e/cm? electron fluence identified as the
threshold where pulsing in insulators exposed to
energetic electrons begins, to be observed in
geostationary transfer orbits [NASA-4002, 1999].
Insulators on the surface of the spacecraft or lightly
shielded materials may be charged by 0.1 keV to 1 MeV
electrons but only at the highest geomagnetic
disturbance levels. Electrons > 1 MeV which penetrate
significant thickness of shielding appear to only be a
bulk charging issue on approach to or return from the
Moon at the most extreme environments for orbits near
the equatorial plane while serious issue with bulk
charging are not expected except for. the most lightly
shielded materials.

It should be noted that the 2x10" e/cm® electron
fluence accumulated in 10 hours threshold assumes
some values typical of insulator conductivity and
temperatures observed in geostationary transfer orbit
satellites giving time constants on the order of 10 hours
or less for charge storage in the insulating materials.
Threats for charging may ocecur at lower electron flux
levels if the insulators are very cold because insulator
electrical  resistivity increases with decreasing



GCR Maximum Filux

1010_ 1 ¥ 1] l2=_l 1:7.28 —l-‘_—-
2=1 ]
Z=2 ~ - - -
5 2=3ta 14
15k Z=1510 28 ~ - - - ]
@ . ]
=
£
>
= L
g 100 -]
2 5
£
B ]
=
2 L E
105 1
100 I 1 ) 1 1 1 1
10 100 10 1?2 10° gt 10 10
Energy {(MeV/nuc)
a)

GCR Minimum Flux

1010 1 L] Li ¥ IZ-*:E;Qa —|_ —
Z=1
Z=2 - - -
L Z2=3 o 14

105 F Z=15 {28 ~ - ~ - |
[ A
=
£ L
= L
= -
3 1o0° ’ N
&
[
3
=
2 -

1051 1

1ge 1 L 1 1 1 3

i 100 10 1w 16t 1e* 105 iaf
Energy (MeV/nuc)
b)

Figure 4. Galactic Cosmic Rays. (a) Solar minimum conditions provide the maximum GCR flux
while (b) solar maximum conditions yield a minimum GCR flux.

temperature and the bulk charging time constant
increase to very long periods allowing charge densities
to accumulate in insulators for periods longer than ten
hours. Future goals in lunar exploration may include
low temperature regions which are still exposed to
electron charging environments such as the dark side of
the moon where temperatures drop to 100K during the
two week lunar night or the lunar poles where
permanently shadowed craters may reach temperatures
of 40K. Further evaluation of space systems designed
for operation in these environments for potential bulk
charging issues is certainly warranted.

3.0 Galactic Cosmic Rays and Selar Particle Events

Galactic cosmic rays (GCR) are electrons and ions
accelerated to extremely high energies in astrophysical
processes outside of the solar system. The GCR energy
spectrum (both intensity and particle energy) is reduced
as the particles penetrate into the heliosphere due to
scattering by irregularities in the interplanetary
magnetic field [Parker, 1965; Fillius and Axford, 1985;
Badhwar and O’Neill, 1996].  Because the magnetic
field irregularities are solar cycle dependent with
ephanced irregularities occurring during  solar
maximum, the GCR flux spectra exhibits a solar cycle
modulation. GCR flux varies over a factor of
approximately 2.5 from solar minimum to solar
maximum with the greatest GCR flux observed at solar
minimum. Flux variations are shown in Figure 4 for
protons (Z=1), helium (Z=2), the summed flux for Li to
Si (3 £ Z < 14), and the summed flux for Pto Ni (15 < Z
< 28). GCR flux is obtained from the 1996 version
[Tylka et al., 1997] of the Cosmic Ray Effects on

Microelectronics (CREME96) model [Adams, 1986]
which includes not only the primary GCR component
which dominate the spectrum at energies greater than
~50 MeV/nuc, but anomalous cosmic ray ions at
energies of ~10-50 MeV/nuc (during solar minimum)
and a low energy solar component which dominates at
energies less than ~10 MeV/nuc. While cosmic ray
fluence is not generally considered a significant source
for ionizing dose in materials compared to the much
larger particle fluence accumulated during solar
energetic particle events, the GCR heavy ion component
are a significant source of energetic ions producing
single event effects in electronic systems and a primary
concern for biological systems due to the penetrating
nature of the radiation.

Cosmic ray flux is isotropic at 1 AU so the dose to the
surface can be easily estimated by multiplying the
differential flux by a factor of approximately obtained
three from integrating the solid angle over the full range
of azimuthal angles and the polar angle from zenith to
the horizon. Since the full flux to a point is 4pi*Jo, the
shielding afforded by the Moon for lunar surface
operations is ¥ the flux observed in free space.

Transient disturbances in the Sun’s outer atmosphere
including flares and coronal mass ejections are a source
of energetic ion fluxes in interplanetary space. The
most intense solar energetic particle (SEP) events are
produced by ion acceleration at the expanding shock
front of coronal mass ejections and are the source of the
most intense energetic radiation environments in
interplanetary space. SEP events occur sporadically
with the greatest probability in the years of solar
maximum and for the first few years afier the peak of
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Figure 5. Solar energetic particles and 10 year fluence environment.

(a) CREME96 worst week average flux. (b) lon fluence environment derived from 5 year GCR
solar maximum ion fluence, 5 year GCR solar minimum ion fluence, and the 7.5 days fluence of
the worst week solar proton average flux given in (a).

solar cycle. Individual events may last more than a
week in extreme cases, but the effects typically last
hours to days. Predicting individual SEP events is
difficuit, but it can be assumed that missions active over
a solar cycle or longer will encounter a number of
events during solar maximum and at least one large SEP
per solar cycle. Engineering design for materials
exposed to SEP radiation environments generally
required qualifying material properties to remain within
specified end of life values for at least one large SEP
per solar cycle.

The 1996 version of the Cosmic Ray Effects on
Microelectronics (CREME96) provides SEP “worst
week” flux, “worst-day” flux, and “peak flux” models
derived from observations during the October 1989 SEP
events [Tylka et al, 1997] for use in evaluating
radiation effects on space systems and effectiveness of
shielding for protection against the most severe
interplanetary radiation environments.  The Worst-
Week Model (Figure 5-a) gives the average flux over a
7.5 day interval (starting at 1300 UT on 19 October
1989). CREME96 worst week model is an extreme
model of an event which would occur only once during
a solar cycle, or approximately a period of nine to
eleven years. Although as many as fifty SEP events
may occur during a solar cycle, the fluence from the
sum of many individual, small events may be dominated
by the contribution of a single large SPE event. It is
traditional in the space systems engineering community
to include the fluence from a single worst case event

over a solar cycle for SEP event environment for this
reason. Large events contain significant quantities of
charged particles with energies in excess of 10 MeV,
which will generate dose even in shielded materials.

The one year lunar surface radiation environment
provided in Figure 5-b is derived from the solar
energetic ion fluence provided by the CREME96 Worst-
Week Model flux over a 7.5 day period with a one year
GCR fluence contribution (solar maximum). Ion
fluence spectra are given for hydrogen (Z=1), helium
(Z=2), summed Li to Si (3 < Z < 14) fluence, and
summed P to Ni (15 < Z < 28) fluence.

4.0 Energetic Particle Dese for Lunar Missions

An estimate for the radiation dose to materials
appropriate for a one year lunar mission can be
estimated for the radiation belt transit and solar
energetic proton environments described in the previous
sections.  The same 300 km perigee low Earth orbit
parking orbit with lunar phasing maneuver at 0° right
ascension of ascending node, 0° argument of perigee, 0°
true anomaly and 379,867 km apogee is used with a 30°
inclination for the lunar transfer orbit. Trapped particle
environments are obtained once again from the AE--
8/AP-8 models but contributions from solar energetic
particle events are included as well. The Emission of
Solar Proton (ESP) model [Xapsos, 1999] provides the
solar energetic proton fluence. Two confidence levels
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(solid) and 99% (dash) ESP solar proton environments are shown in black. Blue lines are the trapped
radiation belt dose contributions from 30° inclination translunar (TLI) and trans-Earth (TEI) injection

orbits including contributions from the 50% and 99% solar proton environments.

Geostationary orbit

(red) and 500 km, 51.6 low Earth orbit (green) examples including both trapped and 50%, 99% solar

proton events are shown for comparison.

are adopted here, a 50% level for mean environments
and a 99% confidence level to estimate extreme
environments due to large solar energetic particle
events.

Two additional total dose environments are included for
comparison. A one year dose from a low Earth orbit
500 km, 51.6° inclination orbit consistent with the ISS
Ionizing Radiation Design Environment [SSP-30512}
includes contributions from the trapped protons and
electrons as well as 50% and 99% ESP solar protons
shielded by the Earth’s geomagnetic field. There is
little difference in the two dose environments due to the
effective shielding provided by the terrestrial magnetic
over most of the ISS orbit. The geostationary orbit
environment is unshielded by the Earth’s geomagnetic
field to solar energetic particles but appears to exhibit
little variation due to the 50% and 99% solar proton
contributions. The apparent discrepancy is resolved by
noting that the trapped electron environments dominate
the dose in materials over a wide range of shielding
depths at geostationary orbit and proton dose is only
significant over a restricted range of shielding depths.

These material results shown in Figure 6 are valid for
materials with thickness less than approximately 50 cm
where additional dose due to secondary particles begins
to be important for crew dose issues.  The total
radiation dose is very small at the shielding thickness
values included here and is not important for materials.

Estimates of dose due to galactic cosmic rays and solar
ions with energies exceeding a few 10’s MeV require
the use of radiation transport model which include the
generation of secondary particles due to nuclear
interactions of the primary flux with shielding materials.
Figure 7 provides incident galactic cosmic ray flux
incident on varying thickness of Apollo-16 soil and
proton and neutron flux emerging from the shielding
material. These results are from the FLUkuierende
KAskade (FLUKA) Monte Carlo radiation transport
model [Fasso et al., 2001a,b; Fasso et al., 2003; Fasso et
al., 2005} which includes the physics for ion nuclear
reactions with shielding materials. Proton flux at
energies less than approximately 10 MeV are reduced
by the shielding but once the incident particle energy
exceeds ~10 MeV the transmitted flux is within an order
of magnitude of the incident flux.  The reason for this
behavior is twofold. First, the reaction cross sections
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Figure 7. GCR Protons on Apollo-16 Seil. (a) Incident protons and transmitted protons including
secondary protons generated in shielding material. (b) Neutrons emerging from shield generated by
nuclear interactions of incident proton flux with Apollo-16 regolith.

are strongly energy dependent and small for large
energies so the energetic protons can penetrate
appreciable thickness of shielding. Second, inelastic
interactions of cosmic ray particles with shielding
materials at energies greater than a few tens MeV are
capable of producing secondary particles. The proton
flux emerging from the shielding material is therefore
composed of both incident particles which penetrate the
shield as well as secondary protons generated within the
shield. Figure 7-b provides the neutron flux emerging
from the Apollo-16 soil shield generated by proton
interactions with the shielding material.

The FLUKA model treats physics of heavy ion
interactions in addition to the protons. Figure 8 is an
example of the radiation dose in silicon due to galactic
cosmic ray ions from Z=1 to Z=28 as a function of
shielding depths in Apollo-16 soil. The spectrum of the
incident isotropic solar minimum cosmic ray ion
environment is the CREME96 model solar minimum
galactic cosmic ray spectrum shown in Figure 4-b.
Dose for each of the Z, ions where n=1,2,...,28 is the
total dose produced by the incident ion Z, and all ions
from z=1 to 28 generated by interactions within the
shield. Dose is dominated by the light ions (H, He) but
significant peaks occur for heavy ions with Z=6,7,8
(CN, 0), Z=12,13 (Mg, Si), and Z=26 (Fe).

Integrated dose in silicon for all ion species in Figure 8
as a function of depth in Apollo-16 soil is given in
Table 1. Space rated electronics parts are typically
qualified for total ionizing radiation dose environments
on the order of 10 Gy (1 krad) so the fractional total
dose environments in Table 1 from galactic cosmic rays
are negligible for electronics parts.

Wilson et al. [1997] results using the HZETRN
deterministic transport code for solar minimum galactic
cosmic ray dose in biological materials including skin,
ocular lens, and blood forming organs as a function of
depth in-aluminum slab shielding is approximately 25%
higher than the FLUKA results for dose in silicon. The
results are comparable within an order of magnitude
consistent with the differences in density of the target
materials and differences in the galactic cosmic ray
environments used for inputs to the codes.

5.0 Plasma (Solar Wind, Magnetosheath, and
Magnetotail) Environments

Solar wind plasma energies are too low to produce bulk
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Figure 8. GCR Dose in Silicon as Function of
Depth in Apollo-16 Soil. Dose for each of the
Z,, n=1,2,...28 ions is due to the incident ion and
all ions (1<Z<28) generated by the nuclear
interactions within the shielding material



Table 1. GCR Dose in Silicon
Shielded by Lunar Regolith

Shielding Depth Dose (Si)

(mm) (g/em™) (cGylyr)
20 5.8 15.88
250 72.5 9.27
500 145.0 5.65

* Assuming regolith density of 2.9 g/cm’.

damage in materials but may degrade surfaces
properties of thermal control coatings (including optical
properties required for heat rejection) and material
integrity of thin materials used for thermal control
systems on lunar orbiters and landers, regolith
“sandbags,” or other lunar infrastructure design features,

Lunar orbit is inclined approximately 5.1 degrees from
the ecliptic plane yielding a maximum distance ranging
5.3 Re that the Moon can be located from the plane.
The magpetotail is approximately circular in cross
section at lunar distances and the radius of the
magnetopause (the boundary between the magnetotail
and the magnetosheath) ranges from 20 to 30 Re [Howe
and Binsack, 1972]. The magnetotail is aligned with the
solar wind, approximately 4 degrees from the Sun Earth
line in the plane of the ecliptic, so the Moon must past
through the magnetotail once each month. Bow shock
dimensions are even larger, with the mean radius
varying from 40 Re to 70 Re (or more) at hunar orbit
[Bennett et al., 1997]. Using values of Ryp= 25 Re and
Rgs = 50 Re for the magnetopause and bow shock radii,
respectively, the fraction the lunar orbit inside the bow
shock is 26.5%, the fraction inside the magnetotail is
13.2%, and the fraction in the magnetosheath (between
the bow shock and magnetopause) is 13.3%. The
balance of the orbit, 73.5%, is spent in the solar wind.

Free field plasma environments shown in Figure 9
appropriate for lunar distances are based on
reconstructed differential flux distributions derived from
mean solar wind [Feldman et al., 1977], magnetosheath,
and plasma sheet [Minow er al. [2000] moment statistics
using the a technique described elsewhere for
reconstructing L2 and solar wind  environments
{Blackwell et al., 2000; Minow et al., 2004a, 2004b,
2005, 2006]. Electron and ion fluence environments for
a ten year period are estimated using the fraction of an
orbit the Moon spends in the solar wind (73.5%), the
magnetosheath (13.3%), and the magnetotail (13.2%) to
scale the number of individual spectra included from
each region when integrating reconstructed differential
flux spectra over one lunar orbit to obtain the fluence.
Magnetotail encounters are all assumed to be plasma
sheet environments which adds a conservative high
energy environment appropriate for engineering design

although many magnetotail encounters are likely to be
the low flux, lower energy lobe environments above or
below the plasma sheet. The electron environments
shown in Figure 9-a is a power law dominated by high
flux at low energies because the component electron
spectra are dominated by the high flux, low energy core
component of the velocity distributions with smaller
contributions from the halo and superhalo components.
The ion fluences in Figure 9-b exhibit two peaks. The
lower energy peak near 1 keV is due to protons and
higher energy peak due to helium ions.

Plasma environments near the moon are perturbed when
the Moon passes through the Earth’s magnetotail or a
spacecraft passes behind the Moon. The effect of the
Earth’s magnetotail is demonstrated first in Figure 10-a
where spin averaged electron flux records from the
Lunar Prospector Electron Reflectometer instrument are
shown for the month of April, 1998. The electron flux
depletion at low electron energies for nearly five days
before the middle of the month is the reduced plasma
flux in the Earth’s magnetotail. In addition, the effects
of a solar energetic particle event is observed starting on
20 April 1998.

High time resolution Electron Reflectometer records
over a two day period are shown in Figure 10-b
demonstrating the modulation of the electron flux when
the spacecraft passes through the Ilunar wake.
Reductions in flux occur at approximately two hour
intervals, the orbital period of the Lunar Prospector
spacecraft, due to passage of the spacecraft through the
solar wind wake. Reductions in electron flux occur at
all energies but are the greatest for the low energy
electrons. ’

6.0 Lunar Phetoelectrons and Surface Potentials

Photoelectrons generated when solar ultraviolet (UV)
and extreme ultraviolet (EUV) photons interact with the
lunar surface. Since the photoelectron current is
generally greater than the incident solar wind electron
currents, the Junar surface will charge positive a few
tens of volts [Manka and Michel, 1973; Freeman et al.,
1973; Freeman and Ibrahim, 2004]. Photoelectron
densities in the lunar plasma sheath have been reported
to range from 130 e-/cm3 at the lunar surface
[Feuerbacher et al., 1972] to peaks on the order of 500
to 1000 #/cm3 at altitudes of 5-10 km above the lunar
surface [Vyshlov, 1974; Vyshlov and Savich, 1978]
although the in-situ observations obtained during the
Apollo 12, 14, and 15 yielded photoelectron densities as
large as 1x10* e/cm’ up to altitudes of 100 m [Reasoner
and Burke, 1972].
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Figure 9. Free-Field Lunar 10 Year Plasma Fluence. (a) Electron and (b) ion fluence environment
for sunward facing surfaces of the lunar surface assuming the Moon spends 73.5% of the time in the
solar wind, 13.3% of the time in the magnetosheath, and 13.2% of the time in the magnetotail (taken to

be plasma sheet).

In contrast to the positive potentials which the lunar
surface charges on -the dayside, the terminator and
nightside regions of the Moon which are not illuminated
but is still exposed to energetic electrons arriving from
the distant tails and sunward flowing components of the
solar wind will charge to negative potentials [Knott,
1973; Mall and Borisov, 2001; Halekas et al., 2002].
WIND spacecraft measurements of wake structure on
nightside suggests large negative potentials on the order
of -400 V in lunar plasma wake [Ogilvie et al., 1996]
and measurements of negative lunar potentials are
reported ranging from 10 to 100 V negative near the
terminator [Lindeman et al., 1973; Freeman and
Ibrahim, 2004] to values of -300 V in the depth of the
lunar wake [Halekas et al., 2005].

7.0 Solar Photon Environments

Solar ultraviolet (UV) and extreme ultraviolet (EUV)
photons are sufficiently energetic to ionize materials
and are a particular concern for degradation of organic
compounds that may be used in lunar infrastructure
design (for example, epoxy fillers for regolith blocks,
polymer radiation shields, polymer “regolith bags” etc.).
Effects will be restricted to surface and subsurface
materials within a few optical depths at the wavelength
of interest.

The solar photon ten year fluence environment given in
Figure 11 is derived from the SOLAR2000 model
[Tobiska et al., 2000, Tobiska, 2004] which provides
daily photon flux spectra (photons/cm2-sec) scaled by
solar activity. A ten year period from I January 1990
to 1 January 2000 was arbitrarily chosen to obtain the
ten year photon fluence. This period starts with the
peak of Solar Cycle 22, includes solar minimum

10

between Cycle’s 22 and 23, and the first peak in Cycle
23 yielding nearly a complete solar cycle.

8.0 Discussion and Summary

The plasma environments described in previous sections
will charge spacecraft due to differential collection of
currents from the space environment. As noted in
Section 2.0, spacecraft potentials in transit to the Moon
could reach kilovolt levels if the spacecraft passes
through eclipse regions. Fortunately, this condition will
likely to be rare for most spacecraft in transit to and
returning from the Moon. However, even spacecraft in
lunar orbit can charge to potentials on the order of
hundreds of volts negative so evaluation of potential
charging threats is important for design of spacecraft
Junar exploration.

The radiation environments are not particularly
challenging compared to those regularly encountered
when designing spacecraft for long term use in
geostationary orbit, geostationary transfer orbit, medium
Earth orbit, or other orbits within the Earth’s
magnetosphere which regularly encounter the trapped
flux within the Earth’s magnetic field. The greatest
challenge for lunar missions like likely be human
radiation dose for long term missions on the Moon if
inadequate shielding is provided to reduce the flux of
primary cosmic rays and the secondary particles
generated within shielding. However, even the cosmic
ray environments are unlikely to represent a major
concern for short term missions to the Moon.
Spacecraft charging environments within the Earth’s
magnetosphere can be avoided using high inclination
orbits or mitigated with good spacecraft design.
Charging environments in lunar orbit regularly produce
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Figure 10. Lunar <20 keV Electron Environments. Lunar Prospector Electron Reflectometer spin

averaged ~40 eV (red) to 20 keV (black) electron flux measurements from Tunar orbit.
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(a) The

complete month of April 1998 is shown including a depletion of the low energy electrons by nearly two
orders of magnitude near the middle of the month during the period the Moon is inside the Earth’s
magnetotail. (b) Detail of electron flux variations for 4 to 6 April 1998 while the Moon is in the solar
wind showing plasma depletions in the lunar wake.

negative potentials on the order of hundreds of volts
suggesting the most challenging charging environments
for lunar exploration will be the dark side of the Moon
and craters which are bathed in plasma fluxes but are
not illuminated by sunlight. Further evaluation of these
regions is required to determine the extent of charging
issues which may exist in dark lunar craters.
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